On the conservation of fast calcium wave speeds
- PMID: 12379182
- DOI: 10.1016/s0143416002001574
On the conservation of fast calcium wave speeds
Abstract
Calcium waves were first seen about 25 years ago as the giant, 10 micro m/s wave or tsunami which crosses the cytoplasm of an activating medaka fish egg [J Cell Biol 76 (1978) 448]. By 1991, reports of such waves with approximately 10 micro m/s velocities through diverse, activating eggs and with approximately 30 micro m/s velocities through diverse, fully active systems had been compiled to form a class of what are now called fast calcium waves [Proc Natl Acad Sci USA 88 (1991) 9883; Bioessays 21 (1999) 657]. This compilation is now updated to include organisms from algae and sponges up to blowflies, squid and men and organizational levels from mammalian brains and hearts as well as chick embryos down to muscle, nerve, epithelial, blood and cancer cells and even cell-free extracts. Plots of these data confirm the narrow, 2-3-fold ranges of fast wave speeds through activating eggs and 3-4-fold ones through fully active systems at a given temperature. This also indicate Q(10)'s of 2.7-fold per 10 degrees C for both activating eggs and for fully activated cells.Speeds through some ultraflat preparations which are a few-fold above the conserved range are attributed to stretch propagated calcium entry (SPCE) rather than calcium-induced calcium release (CICR).
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources