Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Nov;61 Suppl 2(Suppl 2):ii84-6.
doi: 10.1136/ard.61.suppl_2.ii84.

Bone destruction in arthritis

Affiliations
Review

Bone destruction in arthritis

E M Gravallese. Ann Rheum Dis. 2002 Nov.

Abstract

Rheumatoid arthritis (RA) is characterised by the presence of an inflammatory synovitis accompanied by destruction of joint cartilage and bone. Destruction of cartilage matrix results predominantly from the action of connective tissue proteinases released by RA synovial tissues, chondrocytes, and pannus tissue. Several lines of evidence in RA and in animal models of arthritis support a role for osteoclasts in the pathogenesis of bone erosions. RA synovial tissues produce a variety of cytokines and growth factors that may increase osteoclast formation, activity, and/or survival. These include interleukin 1alpha (IL1alpha) and beta, tumour necrosis factor alpha (TNFalpha), IL11, IL17, and macrophage colony stimulating factor (M-CSF). Receptor activator of NFkappaB ligand (RANKL) is an essential factor for osteoclast differentiation and also functions to augment T cell-dendritic cell cooperative interactions. CD4+ T cells and synovial fibroblasts derived from RA synovium are sources of RANKL. Furthermore, in collagen induced arthritis (CIA), blockade with osteoprotegerin (OPG), a decoy receptor for RANKL, results in protection from bone destruction. To further evaluate the role of osteoclasts in focal bone erosion in arthritis, arthritis was generated in the RANKL knockout mouse using a serum transfer model. Despite ongoing inflammation, the degree of bone erosion in arthritic RANKL knockout mice, as assessed by microcomputed tomography and correlated histopathological analysis, was dramatically reduced compared with that seen in arthritic control mice. Cartilage damage was present in both the arthritic RANKL knockout mice and in arthritic control littermates, with a trend toward milder cartilage damage in the RANKL knockout mice. This study supports the hypothesis that osteoclasts play an important part in the pathogenesis of focal bone erosion in arthritis, and reveals distinct mechanisms of cartilage destruction and bone erosion in this animal model of arthritis. Future directions for research in this area include the further investigation of a possible direct role for the RANKL/RANK/OPG system in cartilage metabolism, and the possible role of other cell types and cytokines in bone erosion in arthritis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Arthritis Rheum. 2000 Feb;43(2):259-69 - PubMed
    1. Biochem Biophys Res Commun. 2000 Mar 16;269(2):532-6 - PubMed
    1. Arthritis Rheum. 2000 Apr;43(4):821-6 - PubMed
    1. Am J Pathol. 2000 Aug;157(2):435-48 - PubMed
    1. J Pathol. 2000 Sep;192(1):97-104 - PubMed