Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Nov;40(2):175-183.
doi: 10.1002/glia.10151.

Role of p38 and p44/42 mitogen-activated protein kinases in microglia

Affiliations
Review

Role of p38 and p44/42 mitogen-activated protein kinases in microglia

Milla Koistinaho et al. Glia. 2002 Nov.

Abstract

Although microglial cells are thought to play a beneficial role in the regeneration and plasticity of the central nervous system (CNS), recent studies have indicated that at least some molecules released by microglia may be harmful in acute brain insults and neurodegenerative diseases. Therefore, the pathways mediating the synthesis and release of these neurotoxic compounds are of importance. p38 and p44/42 families of mitogen-activated protein kinases (MAPKs) in microglia respond strongly to various extracellular stimuli, such as ATP, thrombin, and beta-amyloid, a peptide thought to be responsible for the neuropathology in Alzheimer's disease. In this review we describe in vivo evidence implicating that p38 and p44/42 MAPKs may play a critical role in harmful microglial activation in acute brain injury, such as stroke, and in more chronic neurodegenerative diseases, such as Alzheimer's disease. We also clarify the extracellular signals responsible for activation of p38 and p44/42 MAPK in microglia and review the responses so far reported to be mediated by these kinases.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES

    1. Adams JP, Sweatt JD. 2002. Molecular psychology: roles for the ERK MAP Kinase cascade in memory. Annu Rev Pharmacol Toxicol 42: 135-163.
    1. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, Yazaki Y. 1997. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 100: 1813-1821.
    1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T. 2000. Inflammation and Alzheimer's disease. Neurobiol Aging 21: 383-421.
    1. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. 1995. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270: 27489-27494.
    1. Atzori C, Ghetti B, Piva R, Srinivasan AN, Zolo P, Delisle MB, Mirra SS, Migheli A. 2001. Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. J Neuropathol Exp Neurol 60: 1190-1197.

Publication types

MeSH terms

Substances

LinkOut - more resources