Contribution of Kv4 channels toward the A-type potassium current in murine colonic myocytes
- PMID: 12381814
- PMCID: PMC2290598
- DOI: 10.1113/jphysiol.2002.025163
Contribution of Kv4 channels toward the A-type potassium current in murine colonic myocytes
Abstract
A rapidly inactivating K(+) current (A-type current; I(A)) present in murine colonic myocytes is important in maintaining physiological patterns of slow wave electrical activity. The kinetic profile of colonic I(A) resembles that of Kv4-derived currents. We examined the contribution of Kv4 alpha-subunits to I(A) in the murine colon using pharmacological, molecular and immunohistochemical approaches. The divalent cation Cd(2+) decreased peak I(A) and shifted the voltage dependence of activation and inactivation to more depolarized potentials. Similar results were observed with La(3+). Colonic I(A) was sensitive to low micromolar concentrations of flecainide (IC(50) = 11 microM). Quantitative PCR indicated that in colonic and jejunal tissue, Kv4.3 transcripts demonstrate greater relative abundance than transcripts encoding Kv4.1 or Kv4.2. Antibodies revealed greater Kv4.3-like immunoreactivity than Kv4.2-like immunoreactivity in colonic myocytes. Kv4-like immunoreactivity was less evident in jejunal myocytes. To address this finding, we examined the expression of K(+) channel-interacting proteins (KChIPs), which act as positive modulators of Kv4-mediated currents. Qualitative PCR identified transcripts encoding the four known members of the KChIP family in isolated colonic and jejunal myocytes. However, the relative abundance of KChIP transcript was 2.6-fold greater in colon tissue than in jejunum, as assessed by quantitative PCR, with KChIP1 showing predominance. This observation is in accordance with the amplitude of the A-type current present in these two tissues, where colonic myocytes possess densities twice that of jejunal myocytes. From this we conclude that Kv4.3, in association with KChIP1, is the major molecular determinant of I(A) in murine colonic myocytes.
Figures
References
-
- Agus ZS, Dukes ID, Morad M. Divalent cations modulate the transient outward current in rat ventricular myocytes. American Journal of Physiology. 1991;261:C310–318. - PubMed
-
- Amberg GC, Koh SD, Perrino BA, Hatton WJ, Sanders KM. Regulation of A-type potassium channels in murine colonic myocytes by phosphatase activity. American Journal of Physiology – Cell Physiology. 2001;281:C2020–2028. - PubMed
-
- An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ. Modulation of A-type potassium channels by a family of calcium sensors. Nature. 2000;403:553–556. - PubMed
-
- Anderson AE, Adams JP, Qian Y, Cook RG, Pfaffinger PJ, Sweatt JD. Kv4. 2 phosphorylation by cyclic AMP-dependent protein kinase. Journal of Biological Chemistry. 2000;275:5337–5346. - PubMed
-
- Bahring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D. Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2. 2 on channel expression and gating. Journal of Biological Chemistry. 2001;276:23888–23894. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources