Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Nov 5;53(2):212-27.
doi: 10.1002/neu.10097.

Extracellular matrices associated with the apical surfaces of sensory epithelia in the inner ear: molecular and structural diversity

Affiliations
Comparative Study

Extracellular matrices associated with the apical surfaces of sensory epithelia in the inner ear: molecular and structural diversity

Richard J Goodyear et al. J Neurobiol. .

Abstract

The ultrastructure and molecular composition of the extracellular matrices that are associated with the apical surfaces of the mechanosensory epithelia in the mouse inner ear are compared. A progressive increase in molecular and structural organization is observed, with the cupula being the simplest, the otoconial membrane exhibiting an intermediate degree of complexity, and the tectorial membrane being the most elaborate of the three matrices. These differences may reflect changes that occurred in the acellular membranes of the inner ear as a mammalian hearing organ arose during evolution from a simple equilibrium receptor. A comparison of the molecular composition of the acellular membranes in the chick inner ear suggests the auditory epithelium and the striolar region of the maculae are homologous, indicating the basilar papilla may have evolved from the striolar region of an otolithic organ. A comparison of the tectorial membranes in the chick cochlear duct and the mouse cochlea reveals differences in the structure of the noncollagenous matrix in the two species that may result from differences in the stochiometry of alpha- and beta-tectorin and/or differences in the post-translational modification of alpha-tectorin. This comparison also indicates that the appearance of collagen in the mammalian tectorial membrane may have been a major step in the evolution of an electromechanically tuned vertebrate hearing organ that operates over an extended frequency range.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources