The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit
- PMID: 12383521
- DOI: 10.1016/s0378-1119(02)00860-0
The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit
Abstract
Barbamide was extracted from the marine cyanobacterium Lyngbya majuscula strain 19L as a chlorinated lipopeptide for its potent molluscicidal activity. Precursor incorporation studies indicated that it is derived from acetate, L-phenylalanine, L-leucine and L-cysteine. The gene cluster responsible for biosynthesis of barbamide (bar) was cloned and characterized in this study. DNA sequence analysis of cosmid pLM49 revealed a cluster of 12 open reading frames (barA-barK) extending 26 kb including the expected polyketide synthase and non-ribosomal peptide synthetase modules and tailoring genes. The genetic architecture and domain organization of the bar cluster supports the assignment based on the apparent co-linearity of the systems. The activity assay of adenylation domains of barD (A(D)), barE (A(E)) and barG (A(G2) for module 2) in an amino acid-dependent ATP-pyrophosphate exchange experiment supports the conclusion that barbamide is synthesized from acetate, L-phenylalanine, L-cysteine and L-leucine with trichloroleucine as a direct precursor by a mixed polyketide synthase/non-ribosomal polypeptide synthetase. Assembly of barbamide includes unique biochemical mechanisms for chlorination, one-carbon truncation during chain elongation, E-double bond formation and thiazole ring formation.
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
