Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;111(4-5):360-7.
doi: 10.1007/s00439-002-0798-z. Epub 2002 Aug 15.

Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency

Affiliations

Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency

Satoshi Sumi et al. Hum Genet. 2002 Oct.

Abstract

Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138G-->A, 561G-->A, 708G-->A) and two associated with ITPase deficiency (94C-->A, IVS2+21A-->C). Homozygotes for the 94C-->A missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94C-->A heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21A-->C homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94C-->A (allele frequency: 0.06), 24 were heterozygotes for IVS2+21A-->C (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21A-->C heterozygotes and 94C-->A/IVS2+21A-->C compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.

PubMed Disclaimer

Publication types

LinkOut - more resources