Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct 30;83(3):389-400.
doi: 10.1016/s0168-3659(02)00211-0.

Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics

Affiliations

Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics

Michael Chorny et al. J Control Release. .

Abstract

The nanoprecipitation method of nanosphere preparation offers several important advantages, such as readily adjustable and reproducible carrier size in the nanometer range and use of ingredients with low toxic potential, especially important for intravascular delivery. The applicability of the method to encapsulation of strongly lipophilic drugs has not been adequately addressed to date. In this study we applied nanoprecipitation to prepare PLA nanospheres loaded with a lipophilic tyrphostin compound, AG-1295, a potent antirestenotic agent. The effect of several formulation variables on the nanosphere basic properties (carrier size, drug release rate and drug recovery yield) was investigated. The nanosphere size was shown to be readily controlled by modifying the PLA and PLA non-solvent amounts in the organic phase. Carrier size and organic solvents' elimination rate are the main determinants of the drug release rate. The stability and drug recovery yield in the formulation depend on the drug to polymer ratio. Nanoprecipitation protocol modifications were suggested to produce nanospheres combining ultrasmall size (<100 nm) with high drug recovery yield, and to reduce the surfactant amount in the formulation.

PubMed Disclaimer

LinkOut - more resources