Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb;284(2):C378-88.
doi: 10.1152/ajpcell.00260.2002. Epub 2002 Oct 9.

Metabolic inhibition with cyanide induces calcium release in pulmonary artery myocytes and Xenopus oocytes

Affiliations
Free article

Metabolic inhibition with cyanide induces calcium release in pulmonary artery myocytes and Xenopus oocytes

Yong-Xiao Wang et al. Am J Physiol Cell Physiol. 2003 Feb.
Free article

Abstract

We examined the effects of metabolic inhibition on intracellular Ca(2+) release in single pulmonary arterial smooth muscle cells (PASMCs). Severe metabolic inhibition with cyanide (CN, 10 mM) increased intracellular calcium concentration ([Ca(2+)](i)) and activated Ca(2+)-activated Cl(-) currents [I(Cl(Ca))] in PASMCs, responses that were greatly inhibited by BAPTA-AM or caffeine. Mild metabolic inhibition with CN (1 mM) increased spontaneous transient inward currents and Ca(2+) sparks in PASMCs. In Xenopus oocytes, CN also induced Ca(2+) release and activated I(Cl(Ca)), and these responses were inhibited by thapsigargin and cyclopiazonic acid to deplete sarcoplasmic reticulum (SR) Ca(2+), whereas neither heparin nor anti-inositol 1,4,5-trisphosphate receptor (IP(3)R) antibodies affected CN responses. In both PASMCs and oocytes, CN-evoked Ca(2+) release was inhibited by carbonyl cyanide m-chlorophenylhydrazone (CCCP) and oligomycin or CCCP and thapsigargin. Whereas hypoxic stimuli resulted in Ca(2+) release in pulmonary but not mesenteric artery myocytes, CN induced release in both cell types. We conclude that metabolic inhibition with CN increases [Ca(2+)](i) in both pulmonary and systemic artery myocytes by stimulating Ca(2+) release from the SR and mitochondria.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources