Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec;283(6):G1398-411.
doi: 10.1152/ajpgi.00203.2002. Epub 2002 Sep 4.

Expression and function of 5-HT3 receptors in the enteric neurons of mice lacking the serotonin transporter

Affiliations
Free article

Expression and function of 5-HT3 receptors in the enteric neurons of mice lacking the serotonin transporter

Min-Tsai Liu et al. Am J Physiol Gastrointest Liver Physiol. 2002 Dec.
Free article

Abstract

The actions of enteric 5-HT are terminated by 5-HT transporter (SERT)-mediated uptake, and gastrointestinal motility is abnormal in SERT -/- mice. We tested the hypothesis that adaptive changes in enteric 5-HT(3) receptors help SERT -/- mice survive despite inefficient 5-HT inactivation. Expression of mRNA encoding enteric 5-HT(3A) subunits was similar in SERT +/+ and -/- mice, but that of 5-HT(3B) subunits was fourfold less in SERT -/- mice. 5-HT(3B) mRNA was found, by in situ hybridization, in epithelial cells and enteric neurons. 5-HT evoked a fast inward current in myenteric neurons that was pharmacologically identified as 5-HT(3) mediated. The EC(50) of the 5-HT response was lower in SERT +/+ (18 microM) than in SERT -/- (36 microM) mice and desensitized rapidly in a greater proportion of SERT -/- neurons; however, peak amplitudes, steady-state current, and decay time constants were not different. Adaptive changes thus occur in the subunit composition of enteric 5-HT(3) receptors of SERT -/- mice that are reflected in 5-HT(3) receptor affinity and desensitization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources