Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Dec;283(6):H2341-55.
doi: 10.1152/ajpheart.00219.2001. Epub 2002 Aug 22.

Arterial intimal-medial permeability and coevolving structural responses to defined shear-stress exposures

Affiliations
Free article
Comparative Study

Arterial intimal-medial permeability and coevolving structural responses to defined shear-stress exposures

Donald L Fry. Am J Physiol Heart Circ Physiol. 2002 Dec.
Free article

Erratum in

  • Am J Physiol Heart Circ Physiol. 2003 Feb;284(2):following table of contents.

Abstract

The purpose of this research was to examine the evolution of arterial shear stress-induced intimal albumin permeability and coevolving structural responses in swine arteries. Uniform laminar shear-stress responses were compared with those of a simulated "flow separation" stress field. These fields were created using specially designed flow-configuring devices in an experimentally controlled, metabolically supported, ex vivo thoracoabdominal aorta preparation. The Evans blue dye-albumin complex (EBD-alb) permeability patterns that evolved were measured by a reflectometric method. The corresponding tissue structural responses were evaluated by histological, immunostaining, and ultrastructural microscopic techniques. It was shown that when a previously in vivo-adapted artery is challenged by a new mechanochemical environment, it undergoes a sequence of adaptive processes over the ensuing 95 h. Intimal regions of laminar shear-stress exposure ( approximately 16 dyn/cm(2)) responded initially (23 h) with an increase in permeability. With continued stress exposure, intimal-medial structural changes ensued that restored the artery to a physiologically normal permeability. Over this same period, adjacent endothelial regions exposed to simulated flow separation stress fields ( approximately 0.03-0.27 dyn/cm(2)) developed early and progressively increasing permeability. This was associated with formation of local intimal edema, loss of intimal matrix material, and development of distinctively raised, gelatinous-appearing intimal lesions having a potentially preatheromatous architecture.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources