Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Nov 1;169(9):5109-17.
doi: 10.4049/jimmunol.169.9.5109.

Structural factors contributing to DM susceptibility of MHC class II/peptide complexes

Affiliations
Comparative Study

Structural factors contributing to DM susceptibility of MHC class II/peptide complexes

Michael P Belmares et al. J Immunol. .

Abstract

Peptide loading of MHC class II (MHCII) molecules is assisted by HLA-DM, which releases invariant chain peptides from newly synthesized MHCII and edits the peptide repertoire. Determinants of susceptibility of peptide/MHCII complexes to DM remain controversial, however. Here we have measured peptide dissociation in the presence and the absence of DM for 36 different complexes of varying intrinsic stability. We found large variations in DM susceptibility for different complexes using either soluble or full-length HLA-DM. The DM effect was significantly less for unstable complexes than for stable ones, although this correlation was modest. Peptide sequence- and allele-dependent interactions along the entire length of the Ag binding groove influenced DM susceptibility. We also observed differences in DM susceptibility during peptide association. Thus, the peptide repertoire displayed to CD4(+) T cells is the result of a mechanistically complicated editing process and cannot be simply predicted from the intrinsic stability of the complexes in the absence of DM.

PubMed Disclaimer

Publication types

MeSH terms