Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Nov;269(21):5246-58.
doi: 10.1046/j.1432-1033.2002.03236.x.

Modeling the three-dimensional structure of H+-ATPase of Neurospora crassa

Affiliations
Free article
Comparative Study

Modeling the three-dimensional structure of H+-ATPase of Neurospora crassa

Olivier Radresa et al. Eur J Biochem. 2002 Nov.
Free article

Abstract

Homology modeling in combination with transmembrane topology predictions are used to build the atomic model of Neurospora crassa plasma membrane H+-ATPase, using as template the 2.6 A crystal structure of rabbit sarcoplasmic reticulum Ca2+-ATPase [Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. (2000) Nature 405, 647-655]. Comparison of the two calcium-binding sites in the crystal structure of Ca2+-ATPase with the equivalent region in the H+-ATPase model shows that the latter is devoid of most of the negatively charged groups required to bind the cations, suggesting a different role for this region. Using the built model, a pathway for proton transport is then proposed from computed locations of internal polar cavities, large enough to contain at least one water molecule. As a control, the same approach is applied to the high-resolution crystal structure of halorhodopsin and the proton pump bacteriorhodopsin. This revealed a striking correspondence between the positions of internal polar cavities, those of crystallographic water molecules and, in the case of bacteriorhodopsin, the residues mediating proton translocation. In our H+-ATPase model, most of these cavities are in contact with residues previously shown to affect coupling of proton translocation to ATP hydrolysis. A string of six polar cavities identified in the cytoplasmic domain, the most accurate part of the model, suggests a proton entry path starting close to the phosphorylation site. Strikingly, members of the haloacid dehalogenase superfamily, which are close structural homologs of this domain but do not share the same function, display only one polar cavity in the vicinity of the conserved catalytic Asp residue.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources