Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Sep;34(9):1111-20.
doi: 10.1006/jmcc.2002.2062.

Is creatine kinase a target for AMP-activated protein kinase in the heart?

Affiliations
Comparative Study

Is creatine kinase a target for AMP-activated protein kinase in the heart?

Joanne S Ingwall. J Mol Cell Cardiol. 2002 Sep.

Abstract

By phosphorylating target proteins, AMP-activated protein kinase (AMPK) inhibits ATP-utilizing proteins and activates ATP-synthesizing proteins, thereby increasing ATP synthesis under conditions such as hypoxia and ischemia. It has been proposed that AMPK also phosphorylates and inhibits creatine kinase (CK), the enzyme which catalyzes the reversible transfer of a phosphoryl group between creatine and ADP. Here, we examine the hypothesis that AMPK inactivates CK activity under three conditions where [AMP] and AMP-dependent AMPK velocity increase: increased workload both in the isolated rat heart and in the living rat, hypoxia in the living rat heart and low-flow ischemia in the isolated red blood cell perfused rat heart. For the experiments varying workload in the isolated rat heart (both ejecting and isovolumic models), we also changed oxidizable substrate available to the isolated heart in order to vary the [AMP]/[ATP]. CK reaction velocity in the intact rat heart was directly measured using (31)P magnetization transfer. The metabolically active AMP and ATP pools were determined from (31)P NMR measurements and we calculate AMP-dependent AMPK velocity from the Michaelis-Menten relationship. We found that under normoxic conditions where [AMP] and AMPK velocity increase, the linear relationship between CK and AMPK velocities is positive, not inverse. Under conditions of low pO(2) (hypoxia and low-flow ischemia), CK velocity fell 2-4-fold while the increase in AMP-activated AMPK activity was modest. This analysis illustrates the complex nature of AMPK regulation in the heart.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources