Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct;34(10):1241-7.
doi: 10.1006/jmcc.2002.2068.

Elevated myocardial Akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth

Affiliations

Elevated myocardial Akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth

Yoshiaki Taniyama et al. J Mol Cell Cardiol. 2002 Oct.

Abstract

Doxorubicin is a chemotherapeutic agent that can induce cardiotoxicity and congestive heart failure (CHF). In this study we tested whether intracoronary Akt1 gene delivery could inhibit doxorubicin-induced CHF. Saline or a replication defective adenoviral vector expressing constitutively-active Akt1 (myrAkt) or beta-galactosidase (betagal) was delivered to the myocardium of 8 week old rats one day prior to initiating doxorubicin administration. In animals receiving saline or betagal, doxorubicin resulted in significant decreases in cardiac function and retarded post-natal heart growth at the 5 weeks time point. In contrast, transduction of myrAkt protected hearts against doxorubicin-induced decreases in fractional shortening and cardiac index, and improved left ventricular function at 5 weeks time point. Delivery of myrAkt also reversed the doxorubicin-induced reduction in post-natal heart growth and diminished lung edema. These data show that myocardial Akt can inhibit doxorubicin-induced reductions in cardiac function and growth, suggesting that manipulation of this signaling pathway may have utility for the treatment of congestive heart failure.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources