Identifiability of parameters in MCMC Bayesian inference of phylogeny
- PMID: 12396589
- DOI: 10.1080/10635150290102429
Identifiability of parameters in MCMC Bayesian inference of phylogeny
Abstract
Methods for Bayesian inference of phylogeny using DNA sequences based on Markov chain Monte Carlo (MCMC) techniques allow the incorporation of arbitrarily complex models of the DNA substitution process, and other aspects of evolution. This has increased the realism of models, potentially improving the accuracy of the methods, and is largely responsible for their recent popularity. Another consequence of the increased complexity of models in Bayesian phylogenetics is that these models have, in several cases, become overparameterized. In such cases, some parameters of the model are not identifiable; different combinations of nonidentifiable parameters lead to the same likelihood, making it impossible to decide among the potential parameter values based on the data. Overparameterized models can also slow the rate of convergence of MCMC algorithms due to large negative correlations among parameters in the posterior probability distribution. Functions of parameters can sometimes be found, in overparameterized models, that are identifiable, and inferences based on these functions are legitimate. Examples are presented of overparameterized models that have been proposed in the context of several Bayesian methods for inferring the relative ages of nodes in a phylogeny when the substitution rate evolves over time.
Similar articles
-
Bayesian inference of phylogeny and its impact on evolutionary biology.Science. 2001 Dec 14;294(5550):2310-4. doi: 10.1126/science.1065889. Science. 2001. PMID: 11743192
-
Phylogenetic MCMC algorithms are misleading on mixtures of trees.Science. 2005 Sep 30;309(5744):2207-9. doi: 10.1126/science.1115493. Science. 2005. PMID: 16195459
-
An examination of the monophyly of morning glory taxa using Bayesian phylogenetic inference.Syst Biol. 2002 Oct;51(5):740-53. doi: 10.1080/10635150290102401. Syst Biol. 2002. PMID: 12396588
-
Are you my mother? Bayesian phylogenetic inference of recombination among putative parental strains.Appl Bioinformatics. 2003;2(3):131-44. Appl Bioinformatics. 2003. PMID: 15130798 Review.
-
Potential applications and pitfalls of Bayesian inference of phylogeny.Syst Biol. 2002 Oct;51(5):673-88. doi: 10.1080/10635150290102366. Syst Biol. 2002. PMID: 12396583 Review.
Cited by
-
An integrated strategy for prediction uncertainty analysis.Bioinformatics. 2012 Apr 15;28(8):1130-5. doi: 10.1093/bioinformatics/bts088. Epub 2012 Feb 21. Bioinformatics. 2012. PMID: 22355081 Free PMC article.
-
Inferring the Total-Evidence Timescale of Marattialean Fern Evolution in the Face of Model Sensitivity.Syst Biol. 2021 Oct 13;70(6):1232-1255. doi: 10.1093/sysbio/syab020. Syst Biol. 2021. PMID: 33760075 Free PMC article.
-
Conceptual issues in Bayesian divergence time estimation.Philos Trans R Soc Lond B Biol Sci. 2016 Jul 19;371(1699):20150134. doi: 10.1098/rstb.2015.0134. Philos Trans R Soc Lond B Biol Sci. 2016. PMID: 27325831 Free PMC article.
-
The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla.BMC Evol Biol. 2007 Jun 26;7:95. doi: 10.1186/1471-2148-7-95. BMC Evol Biol. 2007. PMID: 17592650 Free PMC article.
-
Assessing parameter identifiability in phylogenetic models using data cloning.Syst Biol. 2012 Dec 1;61(6):955-72. doi: 10.1093/sysbio/sys055. Epub 2012 May 30. Syst Biol. 2012. PMID: 22649181 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources