Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;22(9):957-63.
doi: 10.1089/10799900260286669.

Proteasome-dependent downregulation of p21(Waf1/Cip1) induced by reactive oxygen species

Affiliations

Proteasome-dependent downregulation of p21(Waf1/Cip1) induced by reactive oxygen species

Suqing Xie et al. J Interferon Cytokine Res. 2002 Sep.

Abstract

After hydrogen peroxide (H(2)O(2)) treatment, the p21 (p21(Waf1/Cip1)) protein level in GM00637 fibroblast cells was rapidly decreased, reaching its nadir around 3 h. However, it rebounded within 5 hours to a level higher than that before treatment. Fluorescence microscopic analyses revealed that nuclear p21 was downregulated during the initial oxidative stress. H(2)O(2)-induced downregulation of p21 protein was accompanied by a gradual increase in p21 mRNA levels. Other inducers of genotoxic stress, such as treatment with adriamycin, a DNA damage compound, did not cause a significant decrease in p21 protein levels. Pretreatment of GM00637 cells with the proteasome inhibitors, lactacystin or MG132, completely blocked H(2)O(2)-induced p21 downregulation, suggesting that H(2)O(2) treatment accelerated p21 degradation. Conversely, cotreatment of cells with a protein synthesis inhibitor, cycloheximide, and H(2)O(2) drastically shortened the half-life of p21. Moreover, p21 mRNA levels were not downregulated by treatment with proteasome or protein synthesis inhibitors. Taken together, our studies indicate that oxidative stress induces rapid, but reversible, downregulation of functional p21 by accelerating its protein turnover.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources