Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct 24;419(6909):857-62.
doi: 10.1038/nature01126. Epub 2002 Oct 9.

Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1

Affiliations

Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1

Christian Beisel et al. Nature. .

Retraction in

Abstract

The establishment and maintenance of mitotic and meiotic stable (epigenetic) transcription patterns is fundamental for cell determination and function. Epigenetic regulation of transcription is mediated by epigenetic activators and repressors, and may require the establishment, 'spreading' and maintenance of epigenetic signals. Although these signals remain unclear, it has been proposed that chromatin structure and consequently post-translational modification of histones may have an important role in epigenetic gene expression. Here we show that the epigenetic activator Ash1 (ref. 5) is a multi-catalytic histone methyl-transferase (HMTase) that methylates lysine residues 4 and 9 in H3 and 20 in H4. Transcriptional activation by Ash1 coincides with methylation of these three lysine residues at the promoter of Ash1 target genes. The methylation pattern placed by Ash1 may serve as a binding surface for a chromatin remodelling complex containing the epigenetic activator Brahma (Brm), an ATPase, and inhibits the interaction of epigenetic repressors with chromatin. Chromatin immunoprecipitation indicates that epigenetic activation of Ultrabithorax transcription in Drosophila coincides with trivalent methylation by Ash1 and recruitment of Brm. Thus, histone methylation by Ash1 may provide a specific signal for the establishment of epigenetic, active transcription patterns.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources