Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct 8;215(2):249-53.
doi: 10.1111/j.1574-6968.2002.tb11398.x.

Molecular characterization of antibiotic resistance in clinical Salmonella typhi isolated in Ghana

Affiliations

Molecular characterization of antibiotic resistance in clinical Salmonella typhi isolated in Ghana

Felix Mills-Robertson et al. FEMS Microbiol Lett. .

Abstract

Fifty-eight clinical Salmonella typhi strains isolated from patients suspected of suffering from typhoid fever were obtained at the Korle-Bu Teaching Hospital and the Noguchi Memorial Institute for Medical Research, both located in Ghana, Africa. Each isolate was examined for susceptibility to ampicillin, chloramphenicol, streptomycin, tetracycline, and trimethoprim/sulfamethoxazole by the disk diffusion assay. Five of the isolates were resistant to all five antibiotics while 10 isolates were resistant to ampicillin, chloramphenicol, and trimethoprim/sulfamethoxazole, which are considered 'first line' antibiotics in the treatment of typhoid fever. Thirty-four isolates were resistant to at least one of the antibiotics tested and 62% of these isolates possessed conjugable plasmids belonging to incompatibility group IncHI. Ninety percent of the conjugable plasmids conferred a multiple drug-resistant phenotype on the strains harboring them. Additionally, 14 strains contained plasmids that were transformable and six of them encoded multiple drug resistance. Our findings indicate that multiple drug resistance to the 'first line' antibiotics in S. typhi may be more prevalent in Africa than previously thought.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources