NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA
- PMID: 12401498
- DOI: 10.1016/s1074-5521(02)00241-7
NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA
Abstract
E. coli NikR repressor binds operator DNA in a nickel-dependent fashion. The pM affinity of NikR for nickel is mediated by its C-terminal 86 residues. Nickel binding induced additional secondary structure, decreased the compactness, and increased the stability of NikR. Tetramer formation by the C-terminal domain and intact NikR did not require nickel. High-affinity nickel binding decreased the NikR concentration needed to half maximally protect operator DNA from undetectable levels to 30 nM. The intracellular concentration of NikR in E. coli is high enough that saturation of the high-affinity nickel sites should lead to substantial occupancy of the nik operator. Nickel binding to a set of low-affinity NikR sites resulted in an additional large increase in operator affinity and substantially increased the size of the NikR footprint on the operator.
Similar articles
-
Nonspecific interactions between Escherichia coli NikR and DNA are critical for nickel-activated DNA binding.Biochemistry. 2012 Oct 9;51(40):7873-9. doi: 10.1021/bi300510z. Epub 2012 Sep 25. Biochemistry. 2012. PMID: 22971172
-
Regulation of high affinity nickel uptake in bacteria. Ni2+-Dependent interaction of NikR with wild-type and mutant operator sites.J Biol Chem. 2000 Jun 30;275(26):19735-41. doi: 10.1074/jbc.M002232200. J Biol Chem. 2000. PMID: 10787413
-
Metal-selective DNA-binding response of Escherichia coli NikR.Biochemistry. 2004 Aug 10;43(31):10029-38. doi: 10.1021/bi049404k. Biochemistry. 2004. PMID: 15287730
-
Crystal structure of the nickel-responsive transcription factor NikR.Nat Struct Biol. 2003 Oct;10(10):794-9. doi: 10.1038/nsb985. Epub 2003 Sep 14. Nat Struct Biol. 2003. PMID: 12970756
-
Coordinating intracellular nickel-metal-site structure-function relationships and the NikR and RcnR repressors.Nat Prod Rep. 2010 May;27(5):658-67. doi: 10.1039/b906683g. Epub 2010 Mar 5. Nat Prod Rep. 2010. PMID: 20442957 Review.
Cited by
-
Complex transcriptional control links NikABCDE-dependent nickel transport with hydrogenase expression in Escherichia coli.J Bacteriol. 2005 Sep;187(18):6317-23. doi: 10.1128/JB.187.18.6317-6323.2005. J Bacteriol. 2005. PMID: 16159764 Free PMC article.
-
The intrinsic dynamics and function of nickel-binding regulatory protein: insights from elastic network analysis.Biophys J. 2008 May 15;94(10):3769-78. doi: 10.1529/biophysj.107.115576. Epub 2008 Jan 28. Biophys J. 2008. PMID: 18227134 Free PMC article.
-
Ni(II) coordination to mixed sites modulates DNA binding of HpNikR via a long-range effect.Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5633-8. doi: 10.1073/pnas.1120283109. Epub 2012 Mar 26. Proc Natl Acad Sci U S A. 2012. PMID: 22451934 Free PMC article.
-
The iron hand of uropathogenic Escherichia coli: the role of transition metal control in virulence.Future Microbiol. 2018 Jun 1;13(7):745-756. doi: 10.2217/fmb-2017-0295. Epub 2018 Jun 5. Future Microbiol. 2018. PMID: 29870278 Free PMC article. Review.
-
Coordination chemistry of bacterial metal transport and sensing.Chem Rev. 2009 Oct;109(10):4644-81. doi: 10.1021/cr900077w. Chem Rev. 2009. PMID: 19788177 Free PMC article. Review. No abstract available.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous