Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov;123(5):1607-15.
doi: 10.1053/gast.2002.36578.

Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure

Affiliations

Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure

Ramzi El Asmar et al. Gastroenterology. 2002 Nov.

Erratum in

  • Gastroenterology 2003 Jan;124(1):275. El Asmar Rahzi [corrected to El Asmar Ramzi]

Abstract

Background & aims: Enteric infections have been implicated in the pathogenesis of both food intolerance and autoimmune diseases secondary to the impairment of the intestinal barrier. On the basis of our recent discovery of zonulin, a modulator of small-intestinal tight junctions, we asked whether microorganisms might induce zonulin secretion and increased small-intestinal permeability.

Methods: Both ex vivo mammalian small intestines and intestinal cell monolayers were exposed to either pathogenic or nonpathogenic enterobacteria. Zonulin production and changes in paracellular permeability were monitored in Ussing chambers and micro-snapwells. Zonula occludens 1 protein redistribution after bacteria colonization was evaluated on cell monolayers.

Results: Small intestines exposed to enteric bacteria secreted zonulin. This secretion was independent of either the species of the small intestines or the virulence of the microorganisms tested, occurred only on the luminal aspect of the bacteria-exposed small-intestinal mucosa, and was followed by a decrease in small-intestinal tissue resistance (transepithelial electrical resistance). The transepithelial electrical resistance decrement was secondary to the zonulin-induced tight junction disassembly, as also shown by the disengagement of the protein zonula occludens 1 protein from the tight junctional complex.

Conclusions: This zonulin-driven opening of the paracellular pathway may represent a defensive mechanism, which flushes out microorganisms and contributes to the host response against bacterial colonization of the small intestine.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources