Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep;44(9):897-902.
doi: 10.1016/s0025-326x(02)00118-2.

The dose-response relationship between No. 2 fuel oil and the growth of the salt marsh grass, Spartina alterniflora

Affiliations

The dose-response relationship between No. 2 fuel oil and the growth of the salt marsh grass, Spartina alterniflora

Qianxin Lin et al. Mar Pollut Bull. 2002 Sep.

Abstract

The effect of No. 2 fuel oil on the biomass production of the salt marsh plant, Spartina alterniflora, was studied in a greenhouse dose-response experiment. S. alterniflora were transplanted into soil with 10 dosage levels of No. 2 fuel oil ranging from 0 to 456 mg g(-1) dry soil. Three months after transplantation, values for plant biomass, stem density, and shoot height decreased significantly with increasing fuel oil level in a dose-response fashion. Evapo-transpiration rates were correlated with the total biomass response. Relative to the control, a significant decrease in total (above- plus below-ground) plant biomass was observed at concentrations above 57 mg g(-1) dry soil. Within the 3-month experimental period, detrimental effects on below-ground biomass accumulation and bioluminescence of the marine bacterium Viberio fisheri in the Microtox Solid Phase Test were observed at oil concentrations >29 mg g(-1) dry soil, suggesting that biological effects of oil within the sediment matrix may be more pronounced than on above-ground biomass, requiring a dosage 228 mg g(-1) dry soil to elicit a significant detrimental effect. Hence, measurements of oil effects with biological end-points based solely on above-ground responses may underestimate the potential impacts of petroleum hydrocarbon spills, especially when the oil has penetrated the soil. While S. alterniflora was proved to be relatively tolerant to the No. 2 fuel oil spills, its effectiveness in phytoremediation operations may be limited at fuel oil levels 228 mg g(-1) dry soil, as both plant growth and microbial activity may be constrained.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources