Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar 1;101(5):1777-83.
doi: 10.1182/blood-2002-07-2051. Epub 2002 Oct 24.

HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo

Affiliations

HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo

Atsushi Kunisato et al. Blood. .

Abstract

Mouse long-term hematopoietic reconstituting cells exist in the c-Kit+Sca-1+Lin- (KSL) cell population; among them, CD34(low/-) cells represent the most highly purified population of hematopoietic stem cells in the adult bone marrow. Here, we demonstrate that retrovirus-mediated transduction of CD34(low/-)c-Kit+Sca-1+Lin- (34-KSL) cells with the HES-1 gene, which encodes a basic helix-loop-helix transcription factor functioning downstream of the Notch receptor, and is a key molecule for the growth phase of neural stem cells in the embryo, preserves the long-term reconstituting activity of these cells in vitro. We also show that cells derived from the HES-1-transduced 34-KSL population produce progenies characterized by negative Hoechst dye staining, which defines the side population, and by CD34(low/-) profile in the bone marrow KSL population in each recipient mouse at ratios 3.5- and 7.8-fold those produced by nontransduced 34-KSL-derived competitor cells. We conclude that HES-1 preserves the long-term reconstituting hematopoietic activity of 34-KSL stem cells ex vivo. Up-regulation of HES-1 protein in the 34-KSL population before unnecessary cell division, that is, without retrovirus transduction, may represent a potent approach to absolute expansion of hematopoietic stem cells.

PubMed Disclaimer

Publication types

MeSH terms

Substances