Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar-Apr;2(2):85-92.
doi: 10.1046/j.1359-4117.2002.01014.x.

Effects of hexadecylphosphocholine on phosphatidylcholine and phosphatidylserine metabolism in human lymphoma cells

Affiliations

Effects of hexadecylphosphocholine on phosphatidylcholine and phosphatidylserine metabolism in human lymphoma cells

Dinko Berkovic et al. J Exp Ther Oncol. 2002 Mar-Apr.

Abstract

Hexadecylphosphocholine (HePC) belongs to a new group of antineoplastic agents, the alkylphosphocholines (APC). HePC shows a broad spectrum of biological effects in various cells in vitro and in vivo. It has pronounced antiproliferative effects on neoplastic cells. The molecular mechanism by which HePC exerts its biological effects is still under investigation. By generating a HePC-resistant cell variant of the lymphoma cell line Raji, we established a model to investigate which molecular mechanism may be responsible for the antiproliferative action of HePC. Here we present data showing that HePC substantially interferes with the metabolism of cellular phosphatidylcholine (PC) and phosphatidylserine (PS) in the human lymphoma cell line Raji. HePC leads to an inhibition of PC synthesis via CDP-choline and as a compensatory mechanism enhances the generation of PC via PS indicating that the reduced PC synthesis seems to significantly disturb cellular homeostasis. In HePC-resistant Raji cells, PC synthesis via CDP-choline is constitutively less active and is not further reduced by HePC. Resistant Raji cells do not seem to use the alternative pathway of PC synthesis via PS nor can this be induced by HePC. The resistance mechanism may therefore be independent of cell membrane metabolism.

PubMed Disclaimer

MeSH terms

LinkOut - more resources