Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov;132(5):803-11.
doi: 10.1093/oxfordjournals.jbchem.a003290.

Chaperone-like functions of high-mannose type and complex-type N-glycans and their molecular basis

Affiliations
Free article

Chaperone-like functions of high-mannose type and complex-type N-glycans and their molecular basis

Yuki Jitsuhara et al. J Biochem. 2002 Nov.
Free article

Abstract

It has recently become apparent that high-mannose type N-glycans directly promote protein folding, whereas complex-type ones play a crucial role in the stabilization of protein functional conformations through hydrophobic interactions with the hydrophobic protein surfaces. Here an attempt was made to understand more deeply the molecular basis of these chaperone-like functions with the aid of information obtained from spacefill models of N-glycans. The promotion of protein folding by high-mannose N-glycans seemed to be based on their unique structure, which includes a hydrophobic region similar to the cyclodextrin cavity. The promotive features of high-mannose N-glycans newly observed under various conditions furnished strong support for the view that both intra- and extramolecular high-mannose N-glycans are directly involved in the promotion of protein folding in the endoplasmic reticulum. Further, it was revealed that the N-acetyllactosamine units in complex-type N-glycans have an amphiphilic structure and greatly contribute to the formation of extensive hydrophobic surfaces and, consequently, to the N-glycan-protein hydrophobic interactions. The processing of high-mannose type N-glycans to complex-type ones seems to be an ingenious device to enable the N-glycans to perform these two chaperone-like functions.

PubMed Disclaimer

Publication types