Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan;24(1):19-26.
doi: 10.1016/s0142-9612(02)00237-5.

In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy

Affiliations

In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy

M C García-Alonso et al. Biomaterials. 2003 Jan.

Abstract

In this work, the influence of thermal oxidation treatments of Ti6Al4V at 500 degrees C and 700 degrees C for 1 h on the in vitro corrosion behaviour and osteoblast response is studied. The potential of these treatments, aimed to improve the wear surface performance as biomaterial, relies in the formation of an outer "ceramic" layer of rutile. The corrosion behaviour was evaluated in simulated human fluids by electrochemical impedance spectroscopy and anodic polarisation tests. The effect of these thermal oxidation treatments on osteoblastic behaviour was studied in primary cultures of human osteoblastic cells. Results show that thermal oxidation treatments do not decrease the high in vitro corrosion resistance of the Ti6Al4V alloy. Osteoblast adhesion studies indicate that thermal oxidation treatments do not impair the material biocompatibility. Moreover, the thermal oxidation at 700 degrees C enhances the in vitro osteoblastic cell attachment compared to the thermal oxidation at 500 degrees C.

PubMed Disclaimer

Publication types

LinkOut - more resources