Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov 1;323(4):629-52.
doi: 10.1016/s0022-2836(02)00967-1.

A Janus splicing regulatory element modulates HIV-1 tat and rev mRNA production by coordination of hnRNP A1 cooperative binding

Affiliations

A Janus splicing regulatory element modulates HIV-1 tat and rev mRNA production by coordination of hnRNP A1 cooperative binding

Virginie Marchand et al. J Mol Biol. .

Abstract

Retroviral protein production depends upon alternative splicing of the viral transcript. The HIV-1 acceptor site A7 is required for tat and rev mRNA production. Production of the Tat transcriptional activator is highly controlled because of its apoptotic properties. Two silencer elements (ESS3 and ISS) and two enhancer elements (ESE2 and ESE3/(GAA)3) were previously identified at site A7. hnRNP A1 binds ISS and ESS3 and is involved in the inhibitory process, ASF/SF2 activates site A7 utilisation. Here, by using chemical and enzymatic probes we established the 2D structure of the HIV-1(BRU) RNA region containing site A7 and identified the RNA segments protected in nuclear extract and by purified hnRNP A1. ISS, ESE3/(GAA)3 and ESS3 are located in three distinct stem-loop structures (SLS1, 2 and 3). As expected, hnRNP A1 binds sites 1, 2 and 3 of ISS and ESS3b, and oligomerises on the polypurine sequence upstream of ESS3b. In addition, we discovered an unidentified hnRNP A1 binding site (AUAGAA), that overlaps ESE3/(GAA)3. On the basis of competition experiments, hnRNP A1 has a stronger affinity for this site than for ESS3b. By insertion of (GAA)3 alone or preceded by the AUA trinucleotide in a foreign context, the AUAGAA sequence was found to modulate strongly the (GAA)3 splicing enhancer activity. Cross-linking experiments on these heterologous RNAs and the SLS2-SLS3 HIV-1 RNA region, in nuclear extract and with recombinant proteins, showed that binding of hnRNP A1 to AUA(GAA)3 strongly competes the association of ASF/SF2 with (GAA)3. In addition, disruption of AUA(GAA)3 demonstrated a key role of this sequence in hnRNP A1 cooperative binding to the ISS and ESS3b inhibitors and hnRNP A1 oligomerisation on the polypurine sequence. Thus, depending on the cellular context ([ASF/SF2]/[hnRNP A1] ratio), AUA(GAA)3 will activate or repress site A7 utilisation and can thus be considered as a Janus splicing regulator.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources