Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov;23(11):1781-9.
doi: 10.1093/carcin/23.11.1781.

The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma

Affiliations

The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma

Wenwei Hu et al. Carcinogenesis. 2002 Nov.

Abstract

Trans-4-hydroxy-2-nonenal (4-HNE), a major electrophilic by-product of lipid peroxidation, is able to interact with DNA to form exocyclic guanine adducts. 4-HNE is a mutagen and a significant amount of 4-HNE-guanine adduct has been detected in normal cells. Recently, it has been reported that exposure of the wild-type p53 human lymphoblastoid cell line to 4-HNE causes a high frequency of G to T transversion mutations at the third base of codon 249 (-AGG*-) in the p53 gene, a mutational hotspot in human cancers, particularly hepatocellular carcinoma. These findings raise a possibility that 4-HNE could be an important etiological agent for human cancers that have a mutation at codon 249 of the p53 gene. However, to date, the sequence specificity of 4-HNE-DNA binding remains unclear due to the lack of methodology. To address this question, we have developed a method, using UvrABC nuclease, a nucleotide excision repair enzyme complex isolated from Escherichia coli, to map the distribution of 4-HNE-DNA adducts in human p53 gene at the nucleotide sequence level. We found that 4-HNE-DNA adducts are preferentially formed at the third base of codon 249 in the p53 gene. The preferential binding of 4-HNE was also observed at codon 174, which has the same sequence and the same nearest neighbor sequences (-GAGG*C-) as codon 249. These results suggest that 4-HNE may be an important etiological agent for human cancers that have a mutation at codon 249 of the p53 gene.

PubMed Disclaimer

Publication types

MeSH terms