Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec;40(3):312-23.
doi: 10.1002/glia.10124.

Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes

Affiliations

Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes

Anna Bal-Price et al. Glia. 2002 Dec.

Abstract

Nitric oxide (NO; 1 microM) or an NO donor (500 microM diethylenetriamine-nitric oxide, DETA-NONOate) caused rapid glutamate and ATP release from cultured rat cortical astrocytes. NO-induced glutamate release was prevented by calcium chelators (EGTA or BAPTA-AM) and an inhibitor of vesicular exocytosis (botulinum neurotoxin C, BoTx-C), but not by a glutamate transport inhibitor, L-trans-pyrrolidine-2,4-dicarboxylate (t-PDC), a cyclooxygenase inhibitor (indomethacin), or an inhibitor of soluble guanylate cyclase 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), and was not induced by mitochondrial respiratory inhibitors (myxothiazol or azide). Similarly to glutamate, NO-induced ATP release was also completely blocked by BAPTA-AM and BoTx-C, suggesting again a vesicular, calcium-dependent mechanism of release. Addition of DETA-NONOate (500 microM) to fura-2-loaded astrocytes induced a rapid, transient increase in intracellular calcium levels followed by a lower, sustained level of calcium entry. The latter was blocked by gadolinium (1 microM), an inhibitor of capacitative Ca(2+) entry. Thus, NO appears to cause rapid exocytosis of vesicular glutamate and ATP from astrocytes by raising intracellular calcium levels. Astrocytes activated by lipopolysaccharide/endotoxin and interferon-gamma to express inducible NO synthase (iNOS) maintained substantially higher extracellular glutamate levels than nonactivated cells or activated cells treated with an iNOS inhibitor (1400W), but the rate of glutamate uptake by these cells was similar. This suggests that NO from inflammatory-activated astrocytes causes release of astrocytic glutamate. NO-induced release of astrocytic glutamate and ATP may be important in physiological or pathological communication between astrocytes and neurons.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources