Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jan 10;278(2):940-7.
doi: 10.1074/jbc.M206607200. Epub 2002 Nov 5.

Ubiquitination and proteasomal degradation of endogenous and exogenous inositol 1,4,5-trisphosphate receptors in alpha T3-1 anterior pituitary cells

Affiliations
Free article

Ubiquitination and proteasomal degradation of endogenous and exogenous inositol 1,4,5-trisphosphate receptors in alpha T3-1 anterior pituitary cells

Richard J H Wojcikiewicz et al. J Biol Chem. .
Free article

Abstract

In alphaT3-1 mouse anterior pituitary gonadotropes, chronic activation of gonadotropin-releasing hormone (GnRH) receptors causes inositol 1,4,5-trisphosphate (InsP(3)) receptor down-regulation (Willars, G. B., Royall, J. E., Nahorski, S. R., El-Gehani, F., Everest, H. and McArdle, C. A. (2001) J. Biol. Chem. 276, 3123-3129). In the current study, we sought to define the mechanism behind this adaptive response. We show that GnRH induces a rapid and dramatic increase in InsP(3) receptor polyubiquitination and that proteasome inhibitors block InsP(3) receptor down-regulation and cause the accumulation of polyubiquitinated receptors. Thus, the ubiquitin/proteasome pathway is active in alphaT3-1 cells, and GnRH regulates the levels of InsP(3) receptors via this mechanism. Given these findings and further characterization of this system, we also examined the possibility that alphaT3-1 cells could be used to examine the ubiquitination of exogenous InsP(3) receptors introduced by cDNA transfection. This was found to be the case, since exogenous wild-type InsP(3) receptors, but not binding-defective mutant receptors, were polyubiquitinated in a GnRH-dependent manner, and agents that inhibited the polyubiquitination of endogenous receptors also inhibited the polyubiquitination of exogenous receptors. Further, we used this system to determine whether phosphorylation was involved in triggering InsP(3) receptor polyubiquitination. This was not the case, since mutation of serine residues 1588 and 1755 (the predominant phosphorylation sites in the type I receptor) did not inhibit polyubiquitination. In total, these data show that the ubiquitin/proteasome pathway is active in anterior pituitary cells, that this pathway targets both endogenous and exogenous InsP(3) receptors in GnRH-stimulated alphaT3-1 cells, and that, in contrast to the situation for many other substrates, phosphorylation does not trigger InsP(3) receptor polyubiquitination.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources