Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov 15;169(10):5912-8.
doi: 10.4049/jimmunol.169.10.5912.

Selective eosinophil adhesion to fibroblast via IFN-gamma-induced galectin-9

Affiliations

Selective eosinophil adhesion to fibroblast via IFN-gamma-induced galectin-9

Hirofumi Asakura et al. J Immunol. .

Abstract

Among galectin family members, galectin-9 was first described as a potent eosinophil chemoattractant derived from Ag-stimulated T cells. In the present study a role of galectin-9 in the interaction between eosinophils and fibroblasts was investigated using a human lung fibroblast cell line, HFL-1. RT-PCR, real-time PCR, and Western blot analyses revealed that both galectin-9 mRNA and protein in HFL-1 cells were up-regulated by IFN-gamma stimulation. On the one hand, IL-4, known as a Th2 cytokine, did not affect the galectin-9 expression in HFL-1 cells. We further confirmed that IFN-gamma up-regulated the expression of galectin-9 in primary human dermal fibroblasts. Flow cytometric analysis revealed that IFN-gamma up-regulated surface galectin-9 expression on HFL-1 cells. Stimulation of HFL-1 cells with IFN-gamma up-regulated adhesion of eosinophils, but not neutrophils, to HFL-1 cells. This adherence of eosinophils to HFL-1 cells was inhibited by both lactose and anti-galectin-9 Ab. These findings demonstrate that IFN-gamma-induced galectin-9 expression in fibroblasts mediates eosinophil adhesion to the cells, suggesting a crucial role of galectin-9 in IFN-gamma-stimulated fibroblasts as a physiological modulator at the inflammatory sites.

PubMed Disclaimer

MeSH terms

LinkOut - more resources