Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov;43(6):1015-25.
doi: 10.1016/s0028-3908(02)00129-6.

Alpha-lipoic acid protects the retina against ischemia-reperfusion

Affiliations

Alpha-lipoic acid protects the retina against ischemia-reperfusion

G Chidlow et al. Neuropharmacology. 2002 Nov.

Abstract

The aim of this study was to examine whether the antioxidant alpha-lipoic acid protects retinal neurons from ischemia-reperfusion injury. Rats were injected intraperitoneally with either vehicle or alpha-lipoic acid (100 mg/kg) once daily for 11 days. On the third day, ischemia was delivered to the rat retina by raising the intraocular pressure above systolic blood pressure for 45 min. The electroretinogram was measured prior to ischemia and 5 days after reperfusion. Rats were killed 5 or 8 days after reperfusion and the retinas were processed for immunohistochemistry and for determination of mRNA levels by RT-PCR. Ischemia-reperfusion caused a significant reduction of the a- and b-wave amplitudes of the electroretinogram, a decrease in nitric oxide synthase and Thy-1 immunoreactivities, a decrease of retinal ganglion cell-specific mRNAs and an increase in bFGF and CNTF mRNA levels. All of these changes were clearly counteracted by alpha-lipoic acid. Moreover, in mixed rat retinal cultures, alpha-lipoic acid partially counteracted the loss of GABA-immunoreactive neurons induced by anoxia. The results of the study demonstrate that alpha-lipoic acid provides protection to the retina as a whole, and to ganglion cells in particular, from ischemia-reperfusion injuries. alpha-Lipoic acid also displayed negligible affinity for voltage-dependent sodium and calcium channels.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources