Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec;283(6):E1257-65.
doi: 10.1152/ajpendo.00049.2002.

Allopregnanolone enhancement of GABAergic transmission in rat medial preoptic area neurons

Affiliations
Free article

Allopregnanolone enhancement of GABAergic transmission in rat medial preoptic area neurons

Soko Uchida et al. Am J Physiol Endocrinol Metab. 2002 Dec.
Free article

Abstract

Gamma-aminobutyric acid (GABA)-mediated transmission in the medial preoptic area (MPOA) of the hypothalamus plays an important role in functions such as sex steroid hormone dynamics and control of body temperature. The action of allopregnanolone, the primary metabolite of progesterone, on GABAergic transmission was investigated by employing patch clamp whole cell recording on acutely dissociated rat MPOA neurons with the functional connection of presynaptic terminals. Allopregnanolone enhanced spontaneous GABA release on the MPOA neurons and induced prolonged decay of miniature GABAergic-inhibitory postsynaptic currents (mIPSCs). The facilitation of GABA release from the presynaptic terminals by allopregnanolone disappeared in Ca2+-free extracellular solution. The presynaptic action of this neurosteroid was also blocked by bumetanide, a blocker of cation-Cl- cotransporters, and by removal of extracellular Na+. The results suggest that allopregnanolone enhances GABAergic transmission at the MPOA neurons by pre- and postsynaptic mechanisms. The enhancement of GABA release by allopregnanolone might require a high Cl- concentration in the presynaptic terminal maintained by Na+-dependent, bumetanide-sensitive mechanisms (e.g., Na+-K+-Cl- cotransporter) and might be mediated by Ca2+ influx into presynaptic terminal.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources