Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002;2(2):197-214.
doi: 10.1385/NMM:2:2:197.

Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility?

Affiliations
Review

Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility?

Charles P Gilman et al. Neuromolecular Med. 2002.

Abstract

Signals between neurons are transduced primarily by receptors, and second messenger and kinase cascades, located in pre- and postsynaptic terminals. Such synaptic signaling pathways include those activated by neurotransmitters, cytokines, neurotrophic factors, and cell-adhesion molecules. Many of these signaling systems are also localized in the growth cones of axons and dendrites, where they control pathfinding and synaptogenesis during development. Although it has been known for decades that such signaling pathways can affect the survival of neurons, by promoting or preventing a form of programmed cell death known as apoptosis, we have discovered that apoptotic biochemical cascades can exert local actions on the functions and structural dynamics of growth cones and synapses. In this article, we provide a brief background on apoptotic biochemical cascades, and present examples of studies in this laboratory that have identified novel apoptotic and anti-apoptotic signaling mechanisms that are activated and act locally in synapses, growth cones, and dendrites to modify their structure and function. Apoptotic synaptic cascades that may play roles in neuronal plasticity include activation of caspases that can cleave certain types of ionotropic glutamate-receptor subunits and thereby modify synaptic plasticity. Caspases may also cleave cytoskeletal protein substrates in growth cones of developing neurons and may thereby regulate neurite outgrowth. Par-4 and the tumor-suppressor protein p53 are pro-apoptotic proteins that may also function in synaptic and developmental plasticity. Examples of anti-apoptotic signals that regulate the plasticity of growth cones and synapses include neurotrophic factor-activated kinase cascades, calcium-mediated actin depolymerization, and activation of the transcription factor NF-kappaB. The emerging data strongly suggest that many of the signaling mechanisms that control apoptosis are also involved in regulating the structural and functional plasticity of neuronal circuits under physiological conditions.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Neurosci Lett. 1996 Aug 30;215(1):37-40 - PubMed
    1. J Neurosci. 1989 Nov;9(11):3728-40 - PubMed
    1. Neuron. 1993 May;10(5):805-14 - PubMed
    1. Curr Opin Cell Biol. 2000 Oct;12(5):593-7 - PubMed
    1. J Clin Invest. 2001 Feb;107(3):247-54 - PubMed

MeSH terms

Substances

LinkOut - more resources