Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Feb-Apr;78(2-3):83-103.
doi: 10.1016/s0079-6107(02)00007-x.

Electrophysiology of mammalian Schwann cells

Affiliations
Free article
Review

Electrophysiology of mammalian Schwann cells

Mark D Baker. Prog Biophys Mol Biol. 2002 Feb-Apr.
Free article

Abstract

Schwann cells are the satellite cell of the peripheral nervous system, and they surround axons and motor nerve terminals. The review summarises evidence for the ion channels expressed by mammalian Schwann cells, their molecular nature and known or speculated functions. In addition, the recent evidence for gap junctions and cytoplasmic diffusion pathways within the myelin and the functional consequences of a lower-resistance myelin sheath are discussed. The main types of ion channel expressed by Schwann cells are K(+) channels, Cl(-) channels, Na(+) channels and Ca(2+) channels. Each is represented by a variety of sub-types. The molecular and biophysical characteristics of the cation channels expressed by Schwann cells are closely similar or identical to those of channels expressed in peripheral axons and elsewhere. In addition, Schwann cells express P(2)X ligand-gated ion channels. Possible in vivo roles for each ion channel type are discussed. Ion channel expression in culture could have a special function in driving or controlling cell proliferation and recent evidence indicates that some Ca(2+) channel and Kir channel expression in culture is dependent upon the presence of neurones and local electrical activity.

PubMed Disclaimer

Publication types

LinkOut - more resources