Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Dec;21(6):1251-7.

Unique properties of 189 amino acid isoform of vascular endothelial growth factor in tumorigenesis

Affiliations
  • PMID: 12429975
Comparative Study

Unique properties of 189 amino acid isoform of vascular endothelial growth factor in tumorigenesis

Yasushi Tomii et al. Int J Oncol. 2002 Dec.

Abstract

The 189 amino acid isoform of vascular endothelial growth factor (VEGF189) has been shown to be more strongly associated with the cell membrane than other isoforms of human VEGF (VEGF121, VEGF165). To analyze the biological activities of these VEGF isoforms on tumor growth, we transfected human VEGF121, VEGF165 or VEGF189 cDNA into the human colon cancer cell line SW-480, and established several clones overexpressing these VEGF isoforms. The total amounts of VEGF protein in the culture supernatants of the VEGF189-transfectants were less than those of VEGF121 and VEGF165-transfectants. These transfectants showed no significant differences in growth in culture. Nevertheless, the rate of in vivo tumor growth of VEGF189-transfectants was faster than or equivalent to that of VEGF121-transfectants, while the VEGF165-transfectant showed the greatest enhancement of tumor growth. The protein levels of VEGF were markedly increased only in the VEGF189-transfectants cultured in the presence of heparin. The enhanced in vivo tumor growth of VEGF189-transfectants can be partly explained by the cell-associated features of VEGF189 molecules. The VEGF189 molecule, which is strongly bound to the cell surface, has unique properties and high potential in local angiogenesis and tumor growth in the cancer inductive microenvironment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources