Crystal structure of a B-form DNA duplex containing (L)-alpha-threofuranosyl (3'-->2') nucleosides: a four-carbon sugar is easily accommodated into the backbone of DNA
- PMID: 12431101
- DOI: 10.1021/ja0207807
Crystal structure of a B-form DNA duplex containing (L)-alpha-threofuranosyl (3'-->2') nucleosides: a four-carbon sugar is easily accommodated into the backbone of DNA
Abstract
(L)-alpha-Threofuranosyl-(3'-->2')-oligonucleotides (TNA) containing vicinally connected phosphodiester linkages undergo informational base pairing in an antiparallel strand orientation and are capable of cross-pairing with RNA and DNA. TNA is derived from a sugar containing only four carbon atoms and is one of the simplest potentially natural nucleic acid alternatives investigated thus far in the context of a chemical etiology of nucleic acid structure. Compared to DNA and RNA that contain six covalent bonds per repeating nucleotide unit, TNA contains only five. We have determined the atomic-resolution crystal structure of the B-form DNA duplex [d(CGCGAA)Td(TCGCG)](2) containing a single (L)-alpha-threofuranosyl thymine (T) per strand. In the modified duplex base stacking interactions are practically unchanged relative to the reference DNA structure. The orientations of the backbone at the TNA incorporation sites are slightly altered in order to accommodate fewer atoms and covalent bonds. The conformation of the threose is C4'-exo with the 2'- and 3'-substituents assuming quasi-diaxial orientation.
Similar articles
-
Chemical etiology of nucleic acid structure: the alpha-threofuranosyl-(3'-->2') oligonucleotide system.Science. 2000 Nov 17;290(5495):1347-51. doi: 10.1126/science.290.5495.1347. Science. 2000. PMID: 11082060
-
The structure of a TNA-TNA complex in solution: NMR study of the octamer duplex derived from alpha-(L)-threofuranosyl-(3'-2')-CGAATTCG.J Am Chem Soc. 2008 Nov 12;130(45):15105-15. doi: 10.1021/ja8041959. Epub 2008 Oct 18. J Am Chem Soc. 2008. PMID: 18928287
-
Synthesis of 2'-Deoxy-α-l-threofuranosyl Nucleoside Triphosphates.J Org Chem. 2018 Aug 17;83(16):8840-8850. doi: 10.1021/acs.joc.8b00875. Epub 2018 Jul 27. J Org Chem. 2018. PMID: 30011988
-
An In Vitro Selection Protocol for Threose Nucleic Acid (TNA) Using DNA Display.Curr Protoc Nucleic Acid Chem. 2014 Jun 24;57:9.8.1-19. doi: 10.1002/0471142700.nc0908s57. Curr Protoc Nucleic Acid Chem. 2014. PMID: 24961723 Review.
-
Versatility of threose nucleic acids: synthesis, properties, and applications in chemical biology and biomedical advancements.Chem Commun (Camb). 2024 Oct 15;60(83):11864-11889. doi: 10.1039/d4cc04443f. Chem Commun (Camb). 2024. PMID: 39318271 Review.
Cited by
-
Synthetic biology.Nat Rev Genet. 2005 Jul;6(7):533-43. doi: 10.1038/nrg1637. Nat Rev Genet. 2005. PMID: 15995697 Free PMC article. Review.
-
The XNA alphabet.Nucleic Acids Res. 2025 Jul 8;53(13):gkaf635. doi: 10.1093/nar/gkaf635. Nucleic Acids Res. 2025. PMID: 40650979 Free PMC article. Review.
-
Synthesis of polynucleotide analogs containing a polyvinyl alcohol backbone.Molecules. 2008 Mar 26;13(3):701-15. doi: 10.3390/molecules13030701. Molecules. 2008. PMID: 18463571 Free PMC article.
-
Nucleic-acid structural deformability deduced from anisotropic displacement parameters.Biopolymers. 2011 Apr;95(4):254-69. doi: 10.1002/bip.21570. Epub 2010 Nov 29. Biopolymers. 2011. PMID: 21280021 Free PMC article.
-
Crystallographic analysis of engineered polymerases synthesizing phosphonomethylthreosyl nucleic acid.Nucleic Acids Res. 2022 Sep 23;50(17):9663-9674. doi: 10.1093/nar/gkac792. Nucleic Acids Res. 2022. PMID: 36124684 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous