RAG-dependent peripheral T cell receptor diversification in CD8+ T lymphocytes
- PMID: 12432095
- PMCID: PMC137757
- DOI: 10.1073/pnas.242321099
RAG-dependent peripheral T cell receptor diversification in CD8+ T lymphocytes
Abstract
Rearrangement of T cell receptor (TCR) genes is driven by transient expression of V(D)J recombination-activating genes (RAGs) during lymphocyte development. Immunological dogma holds that T cells irreversibly terminate RAG expression before exiting the thymus, and that all of the progeny arising from mature T cells express the parental TCRs. When single pancreatic islet-derived, NRP-A7 peptide-reactive CD8(+) T cells from nonobese diabetic (NOD) mice were repeatedly stimulated with peptide-pulsed dendritic cells, daughter T cells reexpressed RAGs, lost their ability to bind to NRP-A7K(d) tetramers, ceased to transcribe tetramer-specific TCR genes, and, instead, expressed a vast array of other TCR rearrangements. Pancreatic lymph node (PLN) CD8(+) T cells from animals expressing a transgenic NRP-A7-reactive TCR transcribed and translated RAGs in vivo and displayed endogenous TCRs on their surface. RAG reexpression also occurred in the PLN CD8(+) T cells of wild-type NOD mice and could be induced in the peripheral CD8(+) T cells of nondiabetes-prone TCR-transgenic B10.H2(g7) mice by stimulation with peptide-pulsed dendritic cells. In contrast, reexpression of RAGs could not be induced in the CD8(+) T cells of B6 mice expressing an ovalbumin-specific, K(b)-restricted TCR, or in the CD8(+) T cells of NOD mice expressing a lymphocytic choriomeningitis virus-specific, D(b)-restricted TCR. Extra-thymic reexpression of the V(D)J recombination machinery in certain CD8(+) T cell subpopulations, therefore, enables further diversification of the peripheral T cell repertoire.
Figures




Similar articles
-
Beta-cell-cytotoxic CD8+ T cells from nonobese diabetic mice use highly homologous T cell receptor alpha-chain CDR3 sequences.J Immunol. 1995 Mar 1;154(5):2494-503. J Immunol. 1995. PMID: 7868915
-
Acceleration of spontaneous diabetes in TCR-beta-transgenic nonobese diabetic mice by beta-cell cytotoxic CD8+ T cells expressing identical endogenous TCR-alpha chains.J Immunol. 1996 Nov 15;157(10):4726-35. J Immunol. 1996. PMID: 8906855
-
Fixing an irrelevant TCR alpha chain reveals the importance of TCR beta diversity for optimal TCR alpha beta pairing and function of virus-specific CD8+ T cells.Eur J Immunol. 2010 Sep;40(9):2470-81. doi: 10.1002/eji.201040473. Eur J Immunol. 2010. PMID: 20690181
-
Fidelity and infidelity in commitment to B-lymphocyte lineage development.Immunol Rev. 2000 Jun;175:104-11. Immunol Rev. 2000. PMID: 10933595 Review.
-
Kinetic evolution of a diabetogenic CD8+ T cell response.Ann N Y Acad Sci. 2003 Nov;1005:88-97. doi: 10.1196/annals.1288.010. Ann N Y Acad Sci. 2003. PMID: 14679043 Review.
Cited by
-
Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes.J Clin Invest. 2005 Jul;115(7):1879-87. doi: 10.1172/JCI24219. Epub 2005 Jun 2. J Clin Invest. 2005. PMID: 15937548 Free PMC article.
-
The dynamic lives of T cells: new approaches and themes.Trends Immunol. 2013 Feb;34(2):59-66. doi: 10.1016/j.it.2012.10.006. Epub 2012 Nov 28. Trends Immunol. 2013. PMID: 23200626 Free PMC article. Review.
-
Clonally related CD8+ T cells responsible for rapid population of both diffuse nasal-associated lymphoid tissue and lung after respiratory virus infection.J Immunol. 2011 Jul 15;187(2):835-41. doi: 10.4049/jimmunol.1100125. Epub 2011 Jun 20. J Immunol. 2011. PMID: 21690324 Free PMC article.
-
CD40 interacts directly with RAG1 and RAG2 in autoaggressive T cells and Fas prevents CD40-induced RAG expression.Cell Mol Immunol. 2013 Nov;10(6):483-9. doi: 10.1038/cmi.2013.24. Epub 2013 Sep 16. Cell Mol Immunol. 2013. PMID: 24037181 Free PMC article.
-
Induction of recombinase activity in peripheral T cells in multiple sclerosis.Dokl Biol Sci. 2013 Nov;453:391-3. doi: 10.1134/S0012496613060136. Epub 2014 Jan 3. Dokl Biol Sci. 2013. PMID: 24385179 No abstract available.
References
-
- Fugmann S., Lee, A., Shokett, P., Villey, I. & Schatz, D. (2000) Annu. Rev. Immunol. 18 495-527. - PubMed
-
- Nagaoka H., Yu, W. & Nussenzweig, M. (2000) Curr. Opin. Immunol. 12 187-190. - PubMed
-
- Turka L., Schatz, D., Oettinger, M., Chun, J., Gorka, C., Lee, K., McCormack, W. & Thompson, C. (1991) Science 16 778-781. - PubMed
-
- Borgulya P., Kishi, H., Uematsu, Y. & Boehmer, H. v. (1992) Cell 69 529-537. - PubMed
-
- Monroe R., Seidl, K., Gaertner, F., Han, S., Chen, F., Sekiguchi, J., Wang, J., Ferrini, R., Davidson, L., Kelsoe, G. & Alt, F. (1999) Immunity 11 201-212. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous