Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov 1;36(21):4547-52.
doi: 10.1021/es020649z.

Soil nitrogen cycle processes in urban riparian zones

Affiliations

Soil nitrogen cycle processes in urban riparian zones

Peter M Groffman et al. Environ Sci Technol. .

Abstract

Riparian zones have been found to function as "sinks" for nitrate (NO3-), the most common groundwater pollutant in the U. S., in many areas. The vast majority of riparian research, however, has focused on agricultural watersheds. There has been little analysis of riparian zones in urban watersheds, despite the fact that urban areas are important sources of NO3- to nitrogen (N)-sensitive coastal waters in many locations. In this study, we measured stream incision, water table depths, and pools, production (mineralization, nitrification), and consumption (denitrification) of NO3- in urban soils. Samples were taken from soil profiles (0-100 cm) of three forested urban and suburban zones and one forested reference riparian zone in the Baltimore, Maryland metropolitan area. Our objectives were to determine (1) if stream incision associated with urbanization results in lower riparian water tables, and (2) if pools, production, and consumption of NO3- vary systematically with stream incision and riparian water table levels. Two of the three urban and suburban streams were more incised and all three had lower water tables in their riparian zones than the forested reference stream. Urban and suburban riparian zones had higher NO3- pools and nitrification rates than the forested reference riparian zone, which was likely due to more aerobic soil profiles, lower levels of available soil carbon, and greater N enrichment in the urban and suburban sites. At all sites, denitrification potential decreased markedly with depth in the soil profile. Lower water tables in the urban and suburban riparian zones thus inhibit interaction of groundwater-borne NO3- with near surface soils that have the highest denitrification potential. These results suggest that urban hydrologic factors can increase the production and reduce the consumption of NO3- in riparian zones, reducing their ability to function as sinks for NO3- in the landscape.

PubMed Disclaimer

Publication types

LinkOut - more resources