Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov;14(11):2627-46.
doi: 10.1162/089976602760408008.

Selectively grouping neurons in recurrent networks of lateral inhibition

Affiliations

Selectively grouping neurons in recurrent networks of lateral inhibition

Xiaohui Xie et al. Neural Comput. 2002 Nov.

Abstract

Winner-take-all networks have been proposed to underlie many of the brain's fundamental computational abilities. However, not much is known about how to extend the grouping of potential winners in these networks beyond single neuron or uniformly arranged groups of neurons. We show that competition between arbitrary groups of neurons can be realized by organizing lateral inhibition in linear threshold networks. Given a collection of potentially overlapping groups (with the exception of some degenerate cases), the lateral inhibition results in network dynamics such that any permitted set of neurons that can be coactivated by some input at a stable steady state is contained in one of the groups. The information about the input is preserved in this operation. The activity level of a neuron in a permitted set corresponds to its stimulus strength, amplified by some constant. Sets of neurons that are not part of a group cannot be coactivated by any input at a stable steady state. We analyze the storage capacity of such a network for random groups--the number of random groups the network can store as permitted sets without creating too many spurious ones. In this framework, we calculate the optimal sparsity of the groups (maximizing group entropy). We find that for dense inputs, the optimal sparsity is unphysiologically small. However, when the inputs and the groups are equally sparse, we derive a more plausible optimal sparsity. We believe our results are the first steps toward attractor theories in hybrid analog-digital networks.

PubMed Disclaimer

LinkOut - more resources