Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation
- PMID: 12433844
- DOI: 10.1161/01.res.0000042062.69653.e4
Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation
Abstract
Recent growing evidence suggests that chloride (Cl-) channels are critical to the cell cycle. In cultured rat aortic vascular smooth muscle cells (VSMCs), we have previously found that Cl- channel blockers inhibit endothelin-1 (ET-1)-induced cell proliferation. The present study was designed to further identify the specific Cl- channels responsible for VSMC proliferation. Due to the lack of a specific blocker or opener of any known Cl- channels, we used the antisense strategy to investigate the potential role of ClC-3, a member of the voltage-gated Cl- channel gene family, in cell proliferation of cultured rat aortic VSMCs. With [3H]-thymidine incorporation and immunoblots, we found that ET-1-induced cell proliferation was parallel to a significant increase in the endogenous expression of ClC-3 protein. Transient transfection of rat aortic VSMCs with antisense oligonucleotide specific to ClC-3 caused an inhibition in ET-1-induced expression of ClC-3 protein and cell proliferation of VSMCs in the same concentration- and time-dependent pattern, whereas sense and missense oligonucleotides resulted in no effects on ClC-3 protein expression and cell proliferation. These results strongly suggest that ClC-3 may be the Cl- channel involved in VSMC proliferation and thus provide compelling molecular evidence linking a specific Cl- channel to cell proliferation. The full text of this article is available at http://www.circresaha.org.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
