Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Dec;9(12):928-33.
doi: 10.1038/nsb871.

Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme

Affiliations

Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme

Keiji Takamoto et al. Nat Struct Biol. 2002 Dec.

Abstract

The formation of individual tertiary contacts of the Tetrahymena L-21 Sca I ribozyme has been monitored by hydroxyl radical footprinting and its global conformation by analytical ultracentrifugation as a function of monovalent ion concentration in the absence of divalent ions. Advanced methods of data analysis, which allow the hydroxyl radical reactivity of every nucleotide to be quantified, permit monitoring of each and every structural element of the RNA. Monovalent ion-mediated global compaction of the ribozyme is accompanied by the formation of native tertiary contacts; most native tertiary contacts are evident except several that are located near where divalent ions are observed in crystallographic structures. Non-native tertiary contacts are also observed at low but not high concentrations of monovalent ions. In light of recent studies that have shown that the presence of monovalent ions greatly accelerates the Mg2+-dependent folding of the Tetrahymena ribozyme, the present studies suggest that Na+ concentration changes not only the starting position of the RNA on its folding funnel but also pushes it deep into the well by forming native tertiary contacts and, thus, favoring fast and correct folding pathways.

PubMed Disclaimer

Publication types