Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov;10(11):838-44.
doi: 10.1053/joca.2002.0826.

T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro

Affiliations
Free article

T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro

U Duvvuri et al. Osteoarthritis Cartilage. 2002 Nov.
Free article

Abstract

Objective To assess the correlation between changes in spin-lattice relaxation in the rotating frame (T(1rho)) and proteoglycan (PG) loss from bovine articular cartilage and to demonstrate the feasibility of performing T(1rho) MR imaging on a 1.5T clinical scanner. Design MR relaxation times (T(1rho), T(2) and T(1)) were measured from excised cartilage plugs (N=3) before and after two sequential digestions with trypsin on a 2T whole-body magnet. Proteoglycan and collagen loss induced by the trypsin digestion was measured using standard biochemical techniques. The correlation between changes in relaxation times and PG loss were tested with regression analysis. T(1rho) MRI was also performed on a clinical 1.5T MRI system to determine whether the spatial distribution of PG loss could be detected. The MRI results were compared with histology sections of native and PG-depleted tissue. Results Increase in T(1rho) relaxation times correlated with PG loss (R(2)=0.81). T(1rho) measurements alone were indicative of PG loss (R(2)=0.8), the addition of T1 and T2 data into the statistical model did not improve the correlation substantially (R(2)=0.83). T(1rho)-weighted imaging demonstrated a hyperintense lamina at the articular surface of the digested tissue, which was subjected to trypsin digestion that correlated with a superficial zone of PG loss observed on histological sections. Conclusion The results of this study demonstrate that T(1rho) relaxation changes are correlated with PG loss in vitro. Furthermore, T(1rho) measurements alone can be used to indicate PG loss data. T(1rho) MRI may thus be developed into a useful adjunct to existing techniques for the evaluation of cartilage disease.

PubMed Disclaimer

Publication types

LinkOut - more resources