Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002;53(4):197-215.
doi: 10.1159/000066194.

Backward Haplotype Transmission Association (BHTA) algorithm - a fast multiple-marker screening method

Affiliations

Backward Haplotype Transmission Association (BHTA) algorithm - a fast multiple-marker screening method

Shaw-Hwa Lo et al. Hum Hered. 2002.

Abstract

The mapping of complex traits is one of the most important and central areas of human genetics today. Recent attention has been focused on genome scans using a large number of marker loci. Because complex traits are typically caused by multiple genes, the common approaches of mapping them by testing markers one after another fail to capture the substantial information of interactions among disease loci. Here we propose a backward haplotype transmission association (BHTA) algorithm to address this problem. The algorithm can administer a screening on any disease model when case-parent trio data are available. It identifies the important subset of an original larger marker set by eliminating the markers of least significance, one at a time, after a complete evaluation of its importance. In contrast with the existing methods, three major advantages emerge from this approach. First, it can be applied flexibly to arbitrary markers, regardless of their locations. Second, it takes into account haplotype information; it is more powerful in detecting the multifactorial traits in the presence of haplotypic association. Finally, the proposed method can potentially prove to be more efficient in future genomewide scans, in terms of greater accuracy of gene detection and substantially reduced number of tests required in scans. We illustrate the performance of the algorithm with several examples, including one real data set with 31 markers for a study on the Gilles de la Tourette syndrome. Detailed theoretical justifications are also included, which explains why the algorithm is likely to select the 'correct' markers.

PubMed Disclaimer

Publication types

Substances