Noise, not stimulus entropy, determines neural information rate
- PMID: 12435922
- DOI: 10.1023/a:1021172200868
Noise, not stimulus entropy, determines neural information rate
Abstract
In the quest for deciphering the neural code, theoretical advances were made which allow for the determination of the information rate inherent in the spike trains of nerve cells. However, up to now, the dependence of the information rate on stimulus parameters has not been studied in any neuron in a systematic way. Here, I investigate the information carried by the spike trains of H1, a motion-sensitive visual interneuron of the blowfly (Calliphora vicina) using a moving grating as a stimulus. Stimulus parameters fall in two classes: those that have only a minor effect on the information rate like increasing the frequency bandwidth or the maximum amplitude of the stimulus velocity, and those which dramatically affect the neural information rate, like varying the spatial size or the contrast of the visual pattern being moved. It appears that, for a broad range of complex stimuli, the neuron covers the stimulus with its whole response repertoire regardless of the stimulus entropy, with the information rate being limited by the noise of the stimulus and the neural hardware.
Similar articles
-
Effects of mean firing on neural information rate.J Comput Neurosci. 2001 Mar-Apr;10(2):213-21. doi: 10.1023/a:1011225232120. J Comput Neurosci. 2001. PMID: 11361260
-
Reliability of a fly motion-sensitive neuron depends on stimulus parameters.J Neurosci. 2000 Dec 1;20(23):8886-96. doi: 10.1523/JNEUROSCI.20-23-08886.2000. J Neurosci. 2000. PMID: 11102498 Free PMC article.
-
Decoding stimulus variance from a distributional neural code of interspike intervals.J Neurosci. 2006 Aug 30;26(35):9030-7. doi: 10.1523/JNEUROSCI.0225-06.2006. J Neurosci. 2006. PMID: 16943561 Free PMC article.
-
Learning quadratic receptive fields from neural responses to natural stimuli.Neural Comput. 2013 Jul;25(7):1661-92. doi: 10.1162/NECO_a_00463. Epub 2013 Apr 22. Neural Comput. 2013. PMID: 23607557 Review.
-
Information theoretic approaches to understanding circuit function.Curr Opin Neurobiol. 2012 Aug;22(4):653-9. doi: 10.1016/j.conb.2012.06.005. Epub 2012 Jul 12. Curr Opin Neurobiol. 2012. PMID: 22795220 Free PMC article. Review.
Cited by
-
Closed-loop response properties of a visual interneuron involved in fly optomotor control.Front Neural Circuits. 2013 Mar 27;7:50. doi: 10.3389/fncir.2013.00050. eCollection 2013. Front Neural Circuits. 2013. PMID: 23543872 Free PMC article.
-
Propagation of photon noise and information transfer in visual motion detection.J Comput Neurosci. 2006 Apr;20(2):167-78. doi: 10.1007/s10827-005-5906-3. Epub 2006 Apr 22. J Comput Neurosci. 2006. PMID: 16699840
-
Sharing receptive fields with your neighbors: tuning the vertical system cells to wide field motion.J Neurosci. 2005 Apr 13;25(15):3985-93. doi: 10.1523/JNEUROSCI.0168-05.2005. J Neurosci. 2005. PMID: 15829650 Free PMC article.
-
Naturalistic auditory contrast improves spectrotemporal coding in the cat inferior colliculus.J Neurosci. 2003 Dec 17;23(37):11489-504. doi: 10.1523/JNEUROSCI.23-37-11489.2003. J Neurosci. 2003. PMID: 14684853 Free PMC article.
-
Coding efficiency of fly motion processing is set by firing rate, not firing precision.PLoS Comput Biol. 2010 Jul 22;6(7):e1000860. doi: 10.1371/journal.pcbi.1000860. PLoS Comput Biol. 2010. PMID: 20661305 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources