Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Nov;60(3):233-42.
doi: 10.1007/s00253-002-1114-5. Epub 2002 Oct 12.

Biochemistry and biotechnological applications of Gluconobacter strains

Affiliations
Review

Biochemistry and biotechnological applications of Gluconobacter strains

U Deppenmeier et al. Appl Microbiol Biotechnol. 2002 Nov.

Abstract

The genus Gluconobacter belongs to the group of acetic acid bacteria, which are characterized by their ability to incompletely oxidize a wide range of carbohydrates and alcohols. The corresponding products (aldehydes, ketones and organic acids) are excreted almost completely into the medium. In most cases, the reactions are catalyzed by dehydrogenases connected to the respiratory chain. Since the reactive centers of the enzymes are oriented towards the periplasmic space, transport of substrates and products into, and out of, the cell is not necessary. Thus, rapid accumulation of incompletely oxidized products in the medium is facilitated. These organisms are able to grow in highly concentrated sugar solutions and at low pH-values. High oxidation rates correlate with low biomass production, which makes Gluconobacter strains interesting organisms for industrial applications. Modern fermentation processes, such as the production of L-sorbose (vitamin C synthesis) and 6-amino- L-sorbose (synthesis of the antidiabetic drug miglitol) are carried out with members of this genus. Other important products are dihydroxyacetone, gluconate and ketogluconates. The bacteria belonging to the genus Gluconobacter exhibit extraordinary uniqueness not only in their biochemistry but also in their growth behavior and response to extreme culture conditions. This uniqueness makes them ideal organisms for microbial process development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources