Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Oct:971:108-16.
doi: 10.1111/j.1749-6632.2002.tb04444.x.

Calcium entry, calcium redistribution, and exocytosis

Affiliations
Review

Calcium entry, calcium redistribution, and exocytosis

Inmaculada Cuchillo-Ibanez et al. Ann N Y Acad Sci. 2002 Oct.

Abstract

At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca(2+) concentration, [Ca(2+)](c), depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca(2+) channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High-voltage activated Ca(2+) channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca(2+)](c). Targeted aequorin and confocal microscopy show that Ca(2+) entry through Ca(2+) channels can refill the ER to near millimolar concentrations and causes the release of ER Ca(2+) (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca(2+) that modulates the release of catecholamine. Targeted aequorins with different Ca(2+) affinities show that mitochondria undergo surprisingly rapid millimolar Ca(2+) transients ([Ca(2+)](M)) upon stimulation of chromaffin cells with ACh, high K(+), or caffeine. Physiological stimuli generate [Ca(2+)](c) microdomains at these functional complexes in which the local subplasmalemmal [Ca(2+)](c) rises abruptly from 0.1 micro M to about 50 micro M. This triggers CICR, mitochondrial Ca(2+) uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca(2+) uptake and drastically increase catecholamine release by 3- to 5-fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; such transport might be controlled by Ca(2+) redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca(2+) release.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources