Concerted action of androgens and mechanical strain shifts bone metabolism from high turnover into an osteoanabolic mode
- PMID: 12438430
- PMCID: PMC2193981
- DOI: 10.1084/jem.20021017
Concerted action of androgens and mechanical strain shifts bone metabolism from high turnover into an osteoanabolic mode
Abstract
Adhesion of bone cells to the extracellular matrix is a crucial requirement for osteoblastic development and function. Adhesion receptors connect the extracellular matrix with the cyto-skeleton and convey matrix deformation into the cell. We tested the hypothesis that sex hormones modulate mechanoperception of human osteoblastic cells (HOB) by affecting expression of adhesion molecules like fibronectin and the fibronectin receptor. Only dihydrotestosterone (DHT), but not 17beta-estradiol, stimulated fibronectin (137%) and fibronectin receptor (252%) protein expression. The effects of deformation strain on HOB metabolism were investigated in a FlexerCell strain unit. Cyclically applied strain (2.5% elongation) increased DNA synthesis (125%) and interleukin-6 (IL-6) production (170%) without significantly affecting alkaline phosphatase (AP) activity, type I collagen (PICP), or osteoprotegerin (OPG) secretion. 10 nM DHT pretreatment abolished the mitogenic response of HOB to strain and increased AP activity (119%), PICP (163%), and OPG production (204%). In conclusion, mechanical strain stimulates bone remodeling by increasing HOB mitosis and IL-6 production. DHT enhances the osteoanabolic impact of deformation strain by increasing bone formation via increased AP activity and PICP production. At the same time, bone resorption is inhibited by decreased IL-6 and increased OPG secretion into the bone microenvironment.
Figures



References
-
- Horton, M.A., and J. Davis. 1989. Adhesion receptors in bone. J. Bone Miner. Res. 4:803–807. - PubMed
-
- Hughes, D.E., D.M. Salter, S. Dedhar, and R. Simpson. 1993. Integrin expression in human bone. J. Bone Miner. Res. 8:527–533. - PubMed
-
- Xiong, J., T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S.L. Goodman, and M.A. Arnaout. 2002. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science. 296:151–155. - PubMed
-
- Ruoslahti, E., and M.D. Pierschbacher. 1987. New perspectives in cell adhesion: RGD and integrins. Science. 238:491–497. - PubMed
-
- Wang, N., J.P. Butler, and D.E. Ingber. 1993. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 260:1124–1127. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources