Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Sep-Oct;57(9-10):939-43.
doi: 10.1515/znc-2002-9-1030.

The effect of galactose metabolic disorders on rat brain Na+,K+-ATPase activity

Affiliations
Free article

The effect of galactose metabolic disorders on rat brain Na+,K+-ATPase activity

Stylianos Tsakiris et al. Z Naturforsch C J Biosci. 2002 Sep-Oct.
Free article

Abstract

To evaluate the effect of galactose metabolic disorders on the brain Na+,K+-ATPase in suckling rats. Separate preincubations of various concentrations (1-16 mM) of the compounds galactose-1-phosphate (Gal-1-P) and galactitol (galtol) with whole brain homogenates at 37 degrees C for 1 h resulted in a dose dependent inhibition of the enzyme whereas the pure enzyme (from porcine cerebral cortex) was stimulated. Glucose-1-phosphate (Glu-1-P) or galactose (Gal) stimulated both rat brain Na+,K+-ATPase and pure enzyme. A mixture of Gal-1-P (2 mM), galtol (2 mM) and Gal (4 mM), concentrations commonly found in untreated patients with classical galactosemia, caused a 35% (p < 0.001) rat brain enzyme inhibition. Additionally, incubation of a mixture of galtol (2 mM) and Gal (1 mM), which is usually observed in galactokinase deficient patients, resulted in a 25% (p < 0.001) brain enzyme inactivation. It is suggested that: a) The indirect inhibition of the brain Na+,K+-ATPase by Gal-1-P should be due to the presence of the epimer Gal and phosphate and that the pure enzyme direct activation by Gal-1-P and Glu-1-P to the presence of phosphate only. b) The observed brain Na+,K+-ATPase inhibitions in the presence of toxic concentrations of Gal-1-P and/or galtol could modulate the neural excitability, the metabolic energy production and the catecholaminergic and serotoninergic system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources