Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Nov;30(Pt 6):839-44.
doi: 10.1042/bst0300839.

The role of disc cell heterogeneity in determining disc biochemistry: a speculation

Affiliations
Review

The role of disc cell heterogeneity in determining disc biochemistry: a speculation

T R Oegema Jr. Biochem Soc Trans. 2002 Nov.

Abstract

The nucleus pulposus is a key player in very early disc degeneration. In the young disc, by acting as a water-like fluid, as opposed to a solid, it resists compression and instantaneously distributes forces evenly in all directions to the inner annulus. The disc anlage notochordal cells contribute not only to how the disc develops, but also to the matrix of the young disc at a time when the nucleus is at its most fluid-like. In humans, the notochordal cells disappear early, when there is a transformation of the nucleus into a more solid cartilaginous tissue. In cell culture, the co-cultures of the notochordal cells and chondrocytic cells enhance proteoglycan synthesis by the opposite cell type due, at least partly, to soluble factors. The continued presence of notochordal cells in vivo may provide protection. In work by others, in vivo reinsertion of notochordal-rich nucleus pulposus in a damaged disc will delay annular degeneration. The notochordal cells in the nucleus may have a different phenotype from when they are in the notochord and they may go through a changing programme of expression critical to disc development and maintaining a fluid-like nucleus. Little is known about why, in many species, the notochordal cells die early during growth and only the chondrocytic cells persist. This area offers an interesting avenue of research that may lead to very early intervention in disc degeneration.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources